Communications to the Editor

Polymerization of (4S, 5R)-4-Carbomethoxy-5-methyl-2-oxazoline

Cationic polymerization of unsubstituted 2-oxalzoline was first realized by us to produce poly(N-formylethylenimine) (1), which was converted by hydrolysis into linear poly(ethylenimine) (2). This is a useful process for the

preparation of nonbranched poly(ethylenimine). On the basis of this method, optically active polymers having welldefined structures are prepared from the corresponding optically active 2-oxazolines having a substituent at the 4 or(and) 5 position. A previous paper1 of ours reported the polymerization of 4(S)-4-methyl-2-oxazoline followed by the hydrolysis of the polymer to produce optically active poly(propylenimine). Here, we wish to report a new optically active polymer of the poly(ethylenimine) family, containing a carboxyl group. The monomer, (4S,5R)-4-carbomethoxy-5-methyl-2-oxazoline (3) ($[\alpha]^{13}D$ 231°; THF solution, c 0.375), was prepared by a new method we have developed, in which methyl 2(S):3(R)-threonate ($[\alpha]^{13}D$

+3.4°) was reacted with tert-butyl isocyanide in the presence of PdCl₂ as catalyst.²

$$2(S):3(R) \stackrel{\overset{\star}{\longleftarrow}}{\longrightarrow} \begin{array}{cccc} \overset{\star}{\longleftarrow} \overset{\star}{\longleftarrow} \text{CHCO}_2\text{CH}_3 \\ \downarrow & \downarrow & + t\text{-BuN} = C \end{array} \xrightarrow{\text{PdCl}_2} \\ OH & \text{NH}_2 \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

The polymerization of 3 was accomplished with cationic initiators such as CH3I or CF3SO3Et in dimethylformamide at 100° for 120 hr. The reaction mixture was diluted with methanol and poured into excess ether. The precipitated polymer 4 was a light-brown solid (yield 60%, mp 186°). The molecular weight of 4 was found to be 1.34×10^3 by vapor pressure osmometry (DMF solution, Hitachi Perkin-Elmer 115). The polymer structure was established by elemental analysis and spectral data: pmr (DMSO-d₆) δ 1.2 (d, 3 H), $3.2 \sim 3.6$ (m, 2 H), 3.8 (s, 3 H), 8.2 (s, 1 H); ir (KBr) 1740, 1665, 1610, 1510 cm⁻¹. Anal. Calcd for C₆H₉NO₃: C, 50.34; H, 6.34; N, 9.79. Found: C, 50.26; H, 6.31; N, 9.57. The specific rotation of 4 was $[\alpha]^{20}D$ -11° (MeOH solution, c 0.16) and the ORD spectrum exhibited a positive cotton effect near 253 nm.

The mechanistic study of the cationic polymerization of 2-unsubstituted-2-oxazoline established an SN2 mechanism between the propagating species of the oxazolinium ion and monomeric oxazoline.3 Therefore, the polymerization of 3 is considered to proceed with inversion of configuration at carbon-5 (C-5) of monomer 3. On the other hand, the stereochemistry of carbon-4 (C-4) bearing the carbomethoxy group should be intact since carbon-4 of monomer should not be involved in the propagation step.

Acid hydrolysis of the polymer 4 was carried out in aqueous HCl solution at 100° for 10 hr, giving rise to the HCl salt of 5, as a hygroscopic solid polymer. The pmr spectrum of 5 revealed that signals which are ascribed to >NCHO and -COOCH₃ had disappeared completely. (HCl salt of 5: pmr (D₂O) δ 1.2 (d, 3 H), 3.8 \sim 4.4 (m, 2 H); ir (KBr) 1730 cm⁻¹). The specific rotation of the HCl salt of 5 was $[\alpha]^{20}$ D +69° (MeOH solution, c 0.055).

References and Notes

- (1) T. Saegusa, S. Kobayashi, and M. Ishiguro, Macromolecules, in press.
- (2) Y. Ito, I. Ito, T. Hirao, and T. Saegusa, Synth. Commun., 4, 97 (1974).
 (3) T. Saegusa, H. Ikeda, and H. Fujii, Macromolecules, 5, 359 (1972); 6, 315 (1973); T. Saegusa and H. Ikeda, ibid., 6, 868 (1973).

Takeo Saegusa,* Toshikazu Hirao, and Yoshihiko Ito

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto Japan 606 Received October 2, 1974

Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. II. Application of the Mooney-Rivlin Equation to Networks Cross-Linked at

This paper gives the results of a recalculation of the data in paper I1 of this series, with an expression for strain energy which is a special case of the Mooney-Rivlin theory, instead of the ideal theory based on Gaussian networks.

It was shown in paper I that the apparent concentration of elastically effective network strands terminated by entanglements, ν_N , can be estimated by cross-linking linear polymers in states of strain. The maximum value of ν_N found by this method was about one-half the value obtained from viscoelastic measurements in the rubbery plateau zone, $\nu_{\rm e}$ = 2.5 \times 10⁻⁴ mol cm⁻³. The low value of $\nu_{\rm N}$ was primarily attributed to the cross-linking temperature being too far (12°) above the glass-transition temperature, $T_{\rm g}$. Cross-linking temperatures closer to $T_{\rm g}$ give values of $\nu_{\rm N}$ close to $\nu_{\rm e}$ as will be shown in paper III² of this series. In addition, it was found that these networks behave slightly differently from the predictions of the ideal Gaussian composite network theory:3 ideal Gaussian composite networks are isotropic relative to the state of ease whereas these networks exhibit anistropy of equilibrium swelling relative to the state of ease, in n-heptane; and ν_N , instead of being a constant, was found to decrease with increasing extension ratio during cross-linking, λ_0 . The latter result is illustrated in Figure 1 for irradiation times from 3 to 5 hr; here, ν_N is plotted against the extension ratio, λ_s , in the state of ease in which the retractive force of the entanglement network and the compressive force of the cross-link network are equal and opposite in direction. The experimental points can be fitted rather well by a curve (not the one shown)